Dopamine modulates striatal response to reward and punishment in patients with Parkinson's disease: a pharmacological challenge fMRI study.
نویسندگان
چکیده
It is well established that Parkinson's disease leads to impaired learning from reward and enhanced learning from punishment. The administration of dopaminergic medications reverses this learning pattern. However, few studies have investigated the neural underpinnings of these cognitive processes. In this study, using fMRI, we tested a group of Parkinson's disease patients on and off dopaminergic medications and matched healthy individuals. All individuals completed an fMRI cognitive task that dissociates feedback learning from reward versus punishment. The administration of dopaminergic medications attenuated blood oxygen level dependent (BOLD) responses to punishment in the bilateral putamen, in bilateral dorsolateral prefrontal cortex and the left premotor cortex. Further, the administration of dopaminergic medications resulted in a higher ratio of BOLD activity between reward and punishment trials in these brain areas. BOLD activity in these brain areas was significantly correlated with learning from punishment, but not from reward trials. Furthermore, the administration of dopaminergic medications altered BOLD activity in the right insula and ventromedial prefrontal cortex when Parkinson's disease patients were anticipating feedback. These findings are in agreement with a large body of literature indicating that Parkinson's disease is associated with enhanced learning from punishment. However, it was surprising that dopaminergic medications modulated punishment learning as opposed to reward learning, although reward learning has been directly linked to dopaminergic function. We argue that these results might be attributed to both a change in the balance between direct and indirect pathway activation in the basal ganglia as well as the differential activity of D1 versus D2 dopamine receptors.
منابع مشابه
Reward learning deficits in Parkinson's disease depend on depression.
BACKGROUND Depression is one of the most common and debilitating non-motor symptoms of Parkinson's disease (PD). The neurocognitive mechanisms underlying depression in PD are unclear and treatment is often suboptimal. METHODS We investigated the role of striatal dopamine in reversal learning from reward and punishment by combining a controlled medication withdrawal procedure with functional m...
متن کاملA neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson's disease.
The striatal dopamine signal has multiple facets; tonic level, phasic rise and fall, and variation of the phasic rise/fall depending on the expectation of reward/punishment. We have developed a network model of the striatal direct pathway using an ionic current level model of the medium spiny neuron that incorporates currents sensitive to changes in the tonic level of dopamine. The model neuron...
متن کاملReward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson's patients.
Parkinson's disease is characterized by the degeneration of dopaminergic pathways projecting to the striatum. These pathways are implicated in reward prediction. In this study, we investigated reward and punishment processing in young, never-medicated Parkinson's disease patients, recently medicated patients receiving the dopamine receptor agonists pramipexole and ropinirole and healthy control...
متن کاملCue-induced striatal dopamine release in Parkinson's disease-associated impulsive-compulsive behaviours.
Impulsive-compulsive behaviours are a significant source of morbidity for patients with Parkinson's disease receiving dopaminergic therapy. The development of these behaviours may reflect sensitization of the neural response to non-drug rewards, similar to that proposed for sensitization to drug rewards in addiction. Here, by using (11)C-raclopride positron emission tomography imaging, we inves...
متن کاملEstablishing the dopamine dependency of human striatal signals during reward and punishment reversal learning.
Drugs that alter dopamine transmission have opposite effects on reward and punishment learning. These opposite effects have been suggested to depend on dopamine in the striatum. Here, we establish for the first time the neurochemical specificity of such drug effects, during reward and punishment learning in humans, by adopting a coadministration design. Participants (N = 22) were scanned on 4 o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroreport
دوره شماره
صفحات -
تاریخ انتشار 2018